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Mechatronic Design Automation: A Short
Review

Zhun Fan, Guijie Zhu and Wenji Li

Abstract This paper gives a short review on mechatronic design automation (MDA)
whose optimization method is mainly based on evolutionary computation tech-
niques. The recent progress and research results of MDA are summarized systemat-
ically, and the challenges and future research directions in MDA are also discussed.
The concept of MDA is introduced first, research results and potential challenges of
MDA are analyzed. Then future research directions, focusing on constrained multi-
objective optimization, surrogate-assisted constrained multi-objective optimization,
and design automation by integrating constrained multi-objective evolutionary com-
putation and knowledge extraction, are discussed. Finally, we suggest that MDA has
great potential, and may be the next big technology wave after electronic design au-
tomation (EDA).
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Graph (BG)/ Genetic Programming (GP), Evolutionary Optimization.

30.1 Introduction

Mechatronics is a type of hybrid system that consists of mechanical, electrical, pneu-
matic, hydraulic and control subsystems. Therefore, the design of mechatronics is
different from the design of traditional mechanical, electronic and hydraulic sys-
tems.

In the design process of mechatronic systems, several types of energy conversion
need to be fused [10]. In addition, the design of continuous and/or discrete con-
trollers may also need to be considered in mechatronic systems. As a result, MDA
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needs to consider the automatic concurrent design of controllers and controlled ob-
jects. Since a mechatronic system is usually very complicated, it is so far difficult to
achieve a good strategy for automatically designing and optimizing such a complex
system.

The design of mechatronic systems usually relies on the long-term experience of
engineers, which entails long design cycles and frequent modifications. In addition,
the result of the design is not guaranteed to be optimal. Thus, the research on MDA
is important to help designers improve design performance and efficiency.

The remainder of the paper is organized as follows. Section 30.2 overviews recent
work on MDA, including a discussion on issues and challenges in MDA. Section
30.3 gives future research directions on MDA. Finally, conclusions are drawn in
Section 30.4.

30.2 Mechatronic Design Automation (MDA)

Mechatronic systems with the properties of intelligence, flexibility and multi-
functionalities are becoming important and have received broad attention in re-
cent years. As a special type of mechanical system, mechatronics is a full-featured
and powerful system composed of electronic devices and mechanical components.
Fig. 30.1 shows the different characteristics between electronic systems and pro-
mechanical systems (including micro-electro-mechanical system, mechatronic sys-
tem and pure mechanical system). The properties of coupling and modularity of the
above-mentioned systems are also illustrated in Fig. 30.1.

Fig. 30.1: The relationships of design automation of different systems

In Fig. 30.1, EDA, mDA, MDA and M*DA represent the design automation of
electronic system, micro-electro-mechanical system(MEMS), mechatronic system
and pure mechanical system, respectively. EDA is easy to be realized due to the
high modularity and low coupling of digital electronic systems. The pure mechan-
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ical system has the lowest modularity and the strongest coupling. Thus, the imple-
mentation of M*DA is much more difficult than that of EDA, mDA and MDA. At
present, EDA and mDA have already made great progress. The methods and expe-
riences from EDA and mDA can be transferred to help to optimize the design of
mechatronic systems.

The most significant difference between MDA and EDA is that the former con-
tains a multi-domain physical system integrated with control systems [51]. Mecha-
tronics is an essential stage for the evolution of modern products, which contains
many components from different engineering fields, such as mechanical, electri-
cal, hydraulic and control engineering. Chakrabarti [8] proposed a kind of MDA
framework which can generate a series of conceptual designs that meet pre-set re-
quirements. However, the dynamic behavior of the designed mechatronic system
has not been studied. Campbell [7] studied and developed an agent-based MDA
framework, which has the capability to adapt to dynamic environments. However,
it lacks a detailed analysis of the dynamic behavior of the designed system. Be-
hbahani [5] proposed a concept of mechatronic design quotient (MDQ), which can
integrate multiple design objectives into one single objective. Then, the formulated
optimization problem is solved by using single objective optimization algorithms.
However, when the multiple design objectives are conflicting with each other, the
performance of this method can not be guaranteed. In fact, when the geometry of
the Pareto front of the formulated problem is convex, this method can only find two
endpoints, a fact that can be proved theoretically [33]. Thus, multi-objective op-
timization algorithms are more commonly used methods to solve the mechatronic
design optimization problems with more than one objective.

Bond graphs (BGs) are an unified modeling method for multi-domain sys-
tems [55]. BGs have already been widely used in modeling various of real-world
physical systems such as robots [32], hybrid electric vehicles [21] and wind tur-
bine systems [35], etc. Fig. 30.2 shows an example of a single BG model that can
uniformly represent resonator units in three different fields, including mechanical,
electrical, and micro-electro-mechanical systems. Since BGs can clearly represent
topologies of a system, it becomes an excellent candidate tool in searching open-
ended design spaces. Tay et al. [42] utilized BG to automatically generate the de-
sign of a mechatronic system that meets the pre-defined design specifications, in
which a genetic algorithm (GA) is used to search in the design space. Finger and
Rinderle [22] proposed to apply the BG method to conduct the generation process
from pre-defined design specifications to physical implementations that meet these
design specifications. Seo et al. [39] proposed an automatic design methodology
called BG/GP for mechatronic systems, which combines BG and genetic program-
ming (GP). Compared with other methods, the proposed BG/GP method has obvi-
ous advantages which are shown in Table 30.1.

From Table 30.1, it can be observed that BG, GA and GP have different prop-
erties. BG can be used for the modeling and effective evaluation of multi-domain
systems. GP and GA can both search the design space for optimizing the design.
However, compared with GA, GP has more advantages due to its strong capability
of searching open-ended design spaces. Therefore, GP can optimize the topology
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Table 30.1: Comparisons of various design methods [14]

Properties
Design Methods

BG GA GP BG/GA BG/GP

Multi-domain X X X
Topological Variation X X
Developmental Process X X X X
Automated Synthesis X X X X
Design Optimization X X X X
Efficient Evaluation X X X
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Fig. 30.2: One bond graph represents resonators in different application domains

and parameters of a mechatronic system simultaneously. BG/GA integrates BG and
GA, and BG/GP integrates BG and GP, which has the capability to deal with topo-
logical variation that is not included in BG/GA.

In BG/GP, the BG is used for the modeling of multi-domain systems, while GP
is used for the automatic exploration of the open-ended design spaces. Fig. 30.3
shows the mapping from genotype to phenotype in BG/GP method. The BG serves
as an intermediate medium from the GP tree to the final physical realization, which
is analogy to the mapping from genotype to phenotype. BG/GP not only can auto-
matically perform open-ended topological search, but also optimize parameters of a
system at the same time.

The BG/GP proposed by Fan et al. has already been applied to the design of
electrical and mechatronic systems, such as analog filters [39], electric filters [19]
and the driver system of a printer [20]. At the same time, Wang et al. [45] pro-
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Fig. 30.3: An example of genotype-phenotype mapping

posed a knowledge-based evolutionary design framework for mechatronic systems
by combining the BG/GP method with human knowledge, as shown in Fig. 30.4.
This framework is demonstrated by a quarter-car suspension control system synthe-
sis and a MEMS bandpass filter design application. Through the above-mentioned
cases, the automated design method based on BG/GP provides new ideas for de-
signing of mechatronic systems, which has potential to improve the performance of
existing design schemes.

The traditional design methods for mechatronic systems often have long design
cycles. Therefore, improving the search efficiency of automated design algorithms
is important. Hu et al. [26] proposed a hierarchical hair competition (HFC) model
which has the ability to avoid local premature convergence. Oduguwa et al. [36]
proposed an intelligent design framework which can integrate the human knowl-
edge and judgement. Zhang et al. [54] proposed a competitive mechanism based
on a multi-objective particle swarm optimizer. Wang [43] proposed a hierarchical
surrogate-assisted evolutionary algorithm for optimizing the airfoil of a flying wing
configuration whose fitness evaluation is time-consuming and computationally ex-
pensive. The proposed hierarchical surrogate model is embedded in the covariance
matrix adaptation evolution strategy (CMA-ES) to solve the RAE2822 airfoil opti-
mization problem. The search efficiency of the algorithm can be improved by using
these mechanisms.

As we all know, mechatronic systems usually consist of multiple sub-systems
which come from different domains. Inspired by the study of symbiosis in nature,
Potter et al. [38] proposed a general coevolution framework. They designed a rule-
based control system for autonomous robots by using this co-evolution framework.
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Fig. 30.4: The framework of evolutionary synthesis of mechatronic systems

Although a general architecture of co-evolution has been proposed, the problem
of modeling dynamic systems and the selection of different specific species was
not well solved. Wiegand et al. [47] provided experimental validation analysis of
various collaboration mechanisms and presented some basic recommendations on
how to choose a mechanism for a particular problem.

Wang et al. [46] proposed a unified mechatronics modeling and brain-limb col-
laborative evolution design method. An automobile suspension system was designed
as shown in Fig. 30.5. Compared with the traditional method, this method integrated
the features of unified modeling of multi-domain systems and an open topologi-
cal search. It can help designers get a set of more advanced and optimal designs.
Burmester et al. [6] presented a model driven development approach called Mecha-
tronicUML [4, 23] for the design of self-optimizing mechatronic syetems. They
used the proposed MechatronicUML approach to design discrete and continuous
control syetems. Fan and Dupuis studied the evolutionary design of hybrid mecha-
tronic systems with continuous and discrete properties [12, 13]. They combined the
lookahead controller, hybrid BG, and GP to design the DC-DC converter [13] and
used a Finite State Machine (FSM), hybrid BG, and GP to design multiple-tank
system [12] automatically.

Robot systems, as a sort of complex mechatronic systems, have received great
attention from the industry and academy. For example, Asea Brown Boveri Ltd
(ABB), a well-known robot company, has established a long-term cooperative
relationship with the team of Professor Peter Krus from Linköping University.
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They have conducted in-depth research on design automation for robot systems.
Tarkian [41] clearly defined the concept of “design automation” and used a multi-
objective evolutionary algorithm to optimize the design of robotic manipulators.
In 2000, Lipson [31] designed computer-generated robotic systems by using evo-
lutionary computation and employing a 3D-printer to prototype them. In [25], a
design automation method for a soft robot was proposed, which combined the evo-
lutionary algorithm and the Gaussian mixture model to perform an open topological
search. Jamwal et al. [27] proposed a fuzzy sorting selection method based on multi-
objective evolutionary algorithms to optimize a three-degree-of-freedom wearable
ankle rehabilitation robot. In terms of lightweight design of manipulators, Zhou and
Bai [56] designed a service manipulator by using an integrated design optimization
approach, where manipulator kinematics, dynamics, drive-train design and strength
analysis by means of finite element analysis (FEA) were generally considered. Yin
et al. [50] proposed a method for designing a lightweight manipulator, in which the
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quadratic Lagrange algorithm was used to optimize the structure and the drive trains
of the manipulator.

30.3 Future Research Directions

In the 21st century, mechatronic systems have received growing attention as an
emerging discipline. The above-mentioned research is devoted to solving some chal-
lenging problems in MDA, which stimulates the future development of this disci-
pline. Some issues and directions that deserve further study are listed as follows.

30.3.1 Constrained Multi-Objective Optimization

Generally, in real-world design problems, a designer considers not only one single
design objective, but multiple conflicting objectives with a set of constraints, si-
multaneously. Therefore, the design of mechatronic systems can be formulated as a
constrained multi-objective optimization problem (CMOP).

Constrained multi-objective evolutionary algorithms (CMOEAs) are commonly
used methods to solve CMOPs, because they can achieve a set of feasible and non-
dominated solutions in a single run. Currently, CMOEAs can be generally classified
into two categories according to their selection mechanisms. One is the dominance-
based CMOEAs, and the other is the decomposition-based CMOEAs.

In dominance-based CMOEAs, solutions are selected the next generation based
on non-dominated ranks. Typical examples include NSGA-II-CDP [11] and SP [48].
In decomposition-based CMOEAs, a CMOP is decomposed into a set of constrained
single objective optimization subproblems, and each subproblem is solved in a col-
laborative way. Representative examples include MOEA/D-CDP [28], C-MOEA/D
[1], MOEA/D-Epsilon [49], and MOEA/D-SR [28].

Recently, two decomposition-based CMOEAs, MOEA/D-IEpsilon [16] and MO-
EA/D-ACDP [15], have been proposed for solving CMOPs with large infeasible
regions. In MOEA/D-IEpsilon [16], the epsilon level, which is used to relax con-
straints, is set dynamically according to the ratio of feasible to total solutions in the
current population. Experimental results indicate that MOEA/D-IEpsilon is signifi-
cantly better than four other decomposition-based CMOEAs, including MOEA/D-
Epsilon [49], MOEA/D-SR [28], MOEA/D-CDP [28] and C-MOEA/D [1]. In
MOEA/D-ACDP [15], the proposed angle-based constrained dominance principle
(ACDP) is embedded in MOEA/D to solve CMOPs. Experimental results demon-
strate that the proposed MOEA/D-ACDP [15] is significantly better than the state-
of-the-art CMOEAs, including C-MOEA/D [1], MOEA/D-CDP [28], MOEA/D-
Epsilon [49], MOEA/D-SR [28], NSGA-II [11] and SP [48].

To get across infeasible regions more efficiently, Zhun et al. [17] proposed a push
and pull search (PPS) framework. In the push stage, a multi-objective evolutionary
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algorithm (MOEA) is used to explore the search space without considering any
constraints, which can help to get across infeasible regions very quickly. In the pull
stage, a CMOEA with improved epsilon constraint-handling is applied to pull the
population to the feasible and non-dominated regions. Experimental results indicate
that the proposed PPS method is very effective and efficient in solving CMOPs.

To promote research on constrained multi-objective optimization, Zhun et al.
[18] proposed a difficulty-adjustable and scalable (DAS) test suite with three pri-
mary types of difficulty, which reflect various types of challenges presented by real-
world optimization problems, in order to characterize the constraint functions in
CMOPs. Nine CMOPs and nine constrained many-objective optimization problems
(CMaOPs), called DAS-CMOP1-9 and DAS-CMaOP1-9, were proposed to evalu-
ate the performance of two popular CMOEAs, MOEA/D-CDP and NSGA-II-CDP
and two popular constrained many-objective evolutionary algorithms (CMaOEAs),
CMOEA/DD and CNSGA-III, respectively. Experimental results indicate that these
methods can not solve these problems efficiently, which stimulates researchers to
continue to develop new CMOEAs and CMaOEAs to solve the suggested DAS-
CMOPs and DAS-CMaOPs.

In general, to solve CMOPs efficiently, a single constraint-handling mechanism
is not enough. A future research direction is to dynamically invoke appropriate
constraint-handling mechanisms to search according to the state of the evolving
population of a CMOEA.

30.3.2 Surrogate-Assisted Constrained Multi-objective
Optimization

In most engineering design problems, the evaluation of objectives and constraints is
expensive. Some objectives and/or constraints can only be calculated by doing phys-
ical experiments or calling simulation software, such as aerodynamic shape design,
structural design, large scale circuit design, pharmaceutical design, etc. Thus, the
evaluation process is time- and money-consuming. Optimization problems with the
above-mentioned characteristics are also called expensive optimization problems.
At present, the most representative work for solving expensive optimization prob-
lems is the surrogate-assisted evolutionary algorithm. By using surrogate models in
the evolutionary process, the number of fitness evaluation can be reduced signifi-
cantly.

In recent years, research on surrogate-assisted evolutionary algorithms has at-
tracted increasing attention [9, 29, 34, 37]. For example, Jin et al. [30] proposed
an evolutionary algorithm that can effectively solve nonlinear constrained optimiza-
tion problems. An approximate model was built for each constraint function with
increasing accuracy. Experimental results suggest that the proposed method is com-
petitive compared to state-of-the-art methods for solving nonlinear constrained op-
timization problems. Chugh et al. [9] proposed a surrogate-assisted reference vector
guided evolutionary algorithm for computationally expensive many-objective op-
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timization problems. It adopted the Kriging model to approximate each objective
function to reduce computational costs. Sun et al. [40] proposed a surrogate-assisted
cooperative swarm optimization method for solving high-dimensional expensive
problems. In the proposed method, a surrogate-assisted particle swarm optimization
(PSO) algorithm and a surrogate-assisted social learning-based algorithm coopera-
tively search for the global optimum.

Mechatronic systems are a kind of complex and multi-energy domain coupled
system which consists of components from different engineering fields. The design
process of mechatronic systems is also complex, time-consuming and computation-
ally expensive. Therefore, the research on surrogate-assisted CMOEAs to solve op-
timization problems of mechatronic systems efficiently is a direction worthy of fur-
ther study.

30.3.3 Design Automation by Integrating Constrained
Multi-Objective Evolutionary Computation and Knowledge
Extraction

In the evolutionary process of CMOEAs, a large amount of data is generated, which
contains a lot of knowledge related to the optimization problem. However, in tra-
ditional CMOEAs, these data are not mined, which results in a huge waste of re-
sources.

As we all know, machine learning methods can assist MOEAs to improve search
efficiency in selection and recombination processes [44, 52, 53]. Moreover, machine
learning methods [2, 3] have the capability to acquire knowledge automatically and
to refine knowledge bases, such as discovering new concepts and new models, find-
ing errors in the knowledge bases, and optimizing and simplifying knowledge, etc.
The fusion of machine learning methods with evolutionary algorithms not only im-
proves the performance of the algorithms, but also acquires some design knowledge.
The obtained knowledge can be transformed to other related scenarios, and generate
some innovative designs [24]. Therefore, knowledge-driven optimization, by fusing
CMOEAs and machine learning methods, is a very promising research direction for
design automation of mechatronic systems.

30.4 Conclusion

We provide a preliminary overview of research work in MDA. With the growing
amount and size of mechatronic systems being developed, the need for design au-
tomation for mechatronic systems is paramount. In MDA, evolutionary optimiza-
tion, such as the surrogate-assisted CMOEA, has been shown to be successful at ex-
ploring large search spaces of optimization problems of mechatronic systems with
expensive fitness evaluation, which has great potential for solving the design opti-
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mization problems of mechatronic systems. In the future, MDA integrating knowl-
edge extraction and surrogate-assisted CMOEAs will further improve the perfor-
mance of design automation algorithms and generate more innovative designs.
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